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Summary

Work during the initial half of the grant period, as previously
reported in the semi-annual status report of June 30, 1968, centered on
three areas in the genersl field of digital processing of signals. These
included:
1. Recursive techniques for digital signal brocessing,
2. Data smoothing and compression,
3. Computer simulation of low error rate communication systems.

In this report we focus on the following four areas:
1. Continuation of recursive techniques,
2, Continuation of optimal adaptive control for data compression
systems,
3. Adaptive equalizers for digital tfansmission,
4, Signél zero-crossings as information carriers in communication systems.

As noted in the previous report, work on recursive techniques
extended prior work on the detecticu of binary signals in additive noise
by allowing the inclusion of colorcd oise with numerator dynamics into
the Previous digital formulation. In this report we continue the dis-
cussion of the detection of binary s:gnals in colored noise with
numerator dynamics and show that the resultant detector called for con-
sists of a Kalman filter followed by recursiwe generation of the likeli-
hood ratio. A paper based on this work was presented at the 1969
International Sympoéium on Information Theory [1], and is being submitted
for publication,

One practical difficulty with recursive signal detection, as noted
previously, is that derivatives of samples are required in its implementation.

We report here on work done in determining the effect of approximating
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necessary differential operations by sample differences. The work des-
cribed here will be presented at the PIB-MRI International Symposium on
Computer Processing in Communications, April 9, 1969, and will appéar
in the published proceedings of that symposium. A copy of the paper
submitted is included as an appendix to this report.

In the area of data smoothing and compression we concentrate here
on buffer design at the transmitter to handle the adaptive nature of the
smoothed data flow. This is a continuation of work reported on in the
semi-annual report.

The third area reported on here is that of digital processing for
automatic adaptation of communication systems. Specifically we report
here on work carried out relating to the digital implementation of

adaptive equalizers for minimizing intersymbol interference in multi-

level digital transmission. Two complementary studies are reported on.
One has to do with methods of speeding up known adaptation procedures
(or algorithms). The other has to do with the design of equalizer.; for
nonlinear channel distortion. In addition to this work on adaptatéou,
we have begun broadening its scope to include the area of adaptive
antenna array processing, It is hoped to summarize preliminary results
for this problem in the first report under the continuation of this
grant.

The final area reported on here concerns that of using signal-
crossings as information carriers in communication systems. This work
was also presented at the 1969 International Symposium on Information
Theory [2], and extends work first done for a Master's thesis at the

Polytechnic [3].



1. Recursive Techniques for Digital Signal Processing

a, In a recentkpaperv[4] Pickholtz and Boorstyn described a re-
cursivé approach to signal detection. The scheme was based on the
following: The recei&ed signal was converted into a vector Markov
process which was then sampled. The recursive structure of the digital
processor followed readily. Of concern here are two aspects of thié
problem. First, in order to form a vectorvMarkov process derivatives
of the incomihg signal are usually required. Investigations have been
‘conducted into replacing these differentiation operations with ap-
proximating digital operations, such as differences. These studies,
including simulation results, indicate that it is possible to replace
deriviatives with differences without adversely affecting performance.
Details appear below.

Secondly, the previous paper considered a special type of noise--
that generated by a linear differential equation driven by white noise.
A more general noise description weculd include numerator dynamics.

Work has been initiated extending th# recursive approach in this
direction.

The essential part of the recursive receiver is to convert the
incoming signal plus noise [r(t) = s(t) + y(t)] into a vector Markov
process in such a manner that information is not destroyed., If this is
done by a linear processor then the output of this device is 0(t) = O(&) + T(t)
where the noise component T(t) is to be Markov. Furthermore we insist
that r(t) be recoverable from p(t). Because of the linearity we need
only consider the noise term, 1In the original work.ﬂ(;) consisted of
the derivatives of y(t) as well as y(t) itself and satisfied both of

the above requirements.-
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We now consider y(t) to be generated by the following differential

equation
n n-1 k n-1
d dwi
G R N O R
dt k=0 dc 4=0 dtf

where w(t) is white Gaussian noise. It is possible to find a state
vector x(t) for this system such that the first component xl(t) = y(t).
This vector is the solution of

x(t) = A(t) x(v) + _Iz(t) w(t)

y(r) = ¢’ x(t)

where ¢ =

rO OMH

[

Although x(t) is Markov it cannot be obtainred from y(t) alone--either
w(t) or E(to) is needed in addition (neither is available). We consider

next the best mean-square.estimate -ofx{t)-given.theinput-y(s),.s < t.

Thus

R(t) = Elx(t)]y(s), s <t
Since Ql(t) = y(t), y(t) can be recovered from.§(t)—-it is reversidie.
Furthermore because of the Gaussian assumptionjg(t) is obtained by a
linear operation on y(t). We have shown that g(t) is Markov and thus
letting N(t) = x(t) satisfies our requirements.

To solve forlg(t) we convert the above problem into a meore tract-

able one by differentiating y(t) to obtain

F(£) - cTA(E)x(E) + e ()W (E).
Now Kalman-Bucy techniques can be used to obtain

20 = Ak + 205 - famE®)

where z(t) = IM(OA(D) e + bOIN (Ob(0) ] [Tb(eIny(0)b(e)Tel .



M(t) is the solution of a matrix Riccatti equation.

The differential equation for gKt) driven by y(t) above is just
the linear brocessor used to éonvert r(t) into p(t) when it is driven
by #(t). When driven by 5(t), o(t) will be produced. If these vector

'wavefOrms are now sampled the following recursive form for the log of
the likelihoood ratio results: |

T -1
en-en-l B 2(gn - Bn-gn—l) Kn (gn h Bn En—l)

where Bh and Kn are found from statistics of the noise.

The proposed form of the detector--a Kalman filter followed by
recursive generation of the likelihood ratio--has several features:
it is the only known solution for non-stationary noise; it is a causal
and real-time operation; and, being recursive, these operations require
a minimumn of computational effort and memory capacity.

Further insight can be obtained by allowing the time between
samcles to shrink to zero which results in a continuous processor.
The +#sult of this limiting procedure is a differential equation for
6(t),

8(t) = als(e) - 0,()] [£(t) - py(8)]

where OQ(t) and pz(t) are the second components of the vectors J(t) and
p(t), respectively. The significance of these expressions is that

y(t) - Tb(t) can be shown to be an innovations process 5] and the sub-
sequent operations are equivalent to performing a causal, and causally
invertible, prewhitening operétion [6].

The work derived above has been presented at the 1969 International
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Symposium on Information Theory [1] and is being submitted for publica-

tion. This investigation is continuing.
¢

b. The recursive approéch to signal detection reduces considerably
the computational effort when discrete samples are used. The problem
is that the derivatives of the samples are required. These derivatives
are not available directly from the sampled process and must be ap-
proximated.

Two simple types of derivative approximation have been treated and
are summarized here. One replaces the derivatives, which are random
variables, with their expected values. The other method approximates
the derivatives by difference equations,

Equations for the signal-to-noise ratio using these derivative
approximation techniques were derived. The results of these sub-optimum
procedures may then be compared with the optimum procedure which assumes
all derivatives are completely known.

A computer program for finding the optimum and sub-optimum signal
to nolse ratio for various noise processes and signals was developed.
The.results of this program for several signals of interest are included
here in order to show the effectiveness of the derivative approximation
methods.

The work described in this section will be presented at the PIB-MRI
Symposium on Computer Processing in Communications, New York, April 9,
1969. The corresponding detaiied paper will appear in the proceedings
of that symposium and is included as an appendix to this report.

Two derivative approximation techniques were examined. The first



estimates the derivatives by replacing them with their expected value.
The second uses a difference equation of the sample values. In each
case equations were derived ﬁhich give the signal-tb—nnise ratio of
these sub-optimum processes in recursive form. While the results have
the same‘structure as the optimuy process, they are much more complica-
ted.

The results of this work indicate that near—optimél results can be
obtained using either derivative approximation method. Of the two
methods, the difference equation method yields more predictable results.
In general, the difference equation technique yields results which
appear to converge to the optimum assamples increase. The expectation
method, however, often shows deterioration as samples increase. The
optimum number of samples for this method varies considerably with the

signal and noise characteristics - . e e e

As would be expected, the optimum as well as sub-optimum prrcesses
yield best results when the samples are taken at points which maxitrize
the difference between the two binary transmitted signals. In these
cases the sub-optimum processes give near optimal results, even fur few
samples. Those cases which depend on sample points where the two
signals are equal show rather poor performance. It is also significant
that good results are often obtained in cases where the derivatives
approximated by the difference equation technique could not possibly be
meaningful due to the large sample interval. These observations lead to

the conclusion that errors in derivative approximation do not adversely

affect the signal-to-noise ratio in those cases where meaningful



information is available at the sample point in distinguishing the two
signals. Where this information content is not available both optimum
as well asfsub-optimum processes give poor results.

The method of replacing derivatives with their expected values
usually works as well as, if not better than, the difference equation
method for two or three samples. The results often deterioraﬁe, how-
ever, as samples increase. The cause of this is not obvious, but it
may be reasoned that increased samples often add more error than
information. Obviously this method does not yield approximations
which converge to the true derivative value as the samples increase.
However, since this method is extremely easy to implement, it should
have application in those cases where good results are attainable.

The difference equation méthod gives good results in all of the
test cases. As samples increase, results appear to converge to the
optimumn. The signal-to-noise ratio from this method does not always
incrcase monotonically as the number of samples increaée. This effect
seews to be of a minor nature, and probably occurs only in areas where
the s#&ple interval is too long for the difference equation to give
valid results.

The relative performance of the sub-optimum processes is often
poorest for narrow bana noise. This is probably due to the fact that
where the noise is highly correlated, there is significant information
in the derivatives of the sample state vector. 1In this case the errors
in derivative approximation result in a signal-to-noise ratio well below

optimum. It seems logical to conclude that accurate derivative



estimation is more important for narrow band noise than for wide band
noise.

Although the results obtained are only for second order systems,
conclusions may be extended to higher order systems. It appears that
the importance of accuratgly approximating the derivatives varies in-

versely with the order of the derivative. When considering higher

some

order systems, it should be noted that the approximation of derivatives

by difference equations becomes more inaccurate as the order of the

derivative increases. It is quite likely that the errors introduced

may offset the advantage of modeling the noise process by a high order

process. Better results may be obtained by approximating the noise
process with one of lower ovrder.
It is concluded that the derivative approximation methods inves-

tigated in this report are capable of near optimal results...It has

' also been shown that the relative performance of these approximation
methods are aependent upon the choice of signal. The fact that
simple derivative approximations, in general, yield very good results
is quite significant since any digital processing system using the

proposed detection scheme would require derivative approximation.

2. Optimal Adaptive Control for Data Compression Systems

As noted in the prior semi-annual report the object here is to

determine an optimal controller to minimize the mean-squared error

between discrete input data, X and reconstructed discrete output data,

AT The controller-buffer system was modeled as a discrete Markov
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process and a method of solution adopted using an iterative dynamic pro-
gramming algorithm based on the work of Howard [7]. Once the statistics
of the input process, x_, and the compressor algorithm have been specified,
an optimum controller can be determined using this technique.

During the period reported on, a new method was developed to
' . ‘o cas s (k) . .
determine the transition probabilities, pij , and the expected immediate

qik), from buffer states i to j during major cycle time T, when

losses,
~using aperture value k. These quantities are the inputs to Howard's
policy iteration routine which yields the value of the minimum mean
squared error and the optimum policy which causes this error.

Three sample problems were solved by hand using the equations de-
rived from this new method for uniformly distributed independent data.

A computer program was also written to simulate the system being analyzed.
This program was run using a uniformly distributed random number generator
(having independent samples) as the simulated input and operating with

the optimum policy determined by the hand calculations. In all three
cases the mean squared error obtainzd from the simulation was within a

1% sampling error from the theoreticil minimum mean squared error. As

a further check the program was run for non-optimum policies which

yielded larger mean squared errors.

The remaining work for the uniformly distributed case will be to
solve the equations for a sufficient number of problems to yield tabular
or graphical data for the design curves. Due to thé complexity of the
equations, the iterative solution has been programmed in FORTRAN on a
digital computer and is persently being debugged. The results of the

three hand calculated sample problems are being used as a standard to
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help debug this program. After the program has been debugged and run
for a sufficient number of problems, these results will be sfot checked
with the simulation progran.

It is then proposed to derive the equations for uniformly distvi-
buted Markov data. A Markov data model is presently being investigated.
This model should have the properties of containing a parameter that
can vary the correlation coefficient of adjacent samples between zero
and unity, and be in a form that can be readily simulated on a digital

computer.

3. Adaptive Equalizers for Digital Transmission

A great deal of effort in the past few years has gone into the
development of adaptive equalizers to minimize the intersymbol inter-

ference introduced in the transmission of multilevel digital data

through (unknown) dispersive channels. This is of significant techno-
logical importance both in the transmission of high-speed digital decta
over telephone lines and through time-varying dispersive media such #s
the ionosphere, troposphere, ete. The mathematics of the problem wre

such as to also permit the results to be extended to such other areas

as adaptive antenna systems.

The adaptive equalizers initially developed and reported on in the
literature were of the tapped-delay line, transversal filter configura-
tion [8]. More recently ecaphasis has been placed on ail-digital config-
urations using integrated circuitry. More generally one may represent
the processor (the equalizer) as & non-recursive digital filter and

search for means for optimally adjusting the filter coefficients. The
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equalizer problem then becomes equivalent to that of developing a
special-purpose computer (whether hard-wired or in software® form) that
processes the incoming signal samples to minimize distortion due to
intersymbol interference. As signal waveshapes or channel character-
istics change the processor automatically adapts to the new conditions.

In most previous wérk a grédient search technique with fixed step
size was assumed in formulating the algorithms for adjusting the filter
coefficients. This method can be rather slow in converging to the ap-
propriate optimum point, putting a limit on the rate at which the
system adapts to changing conditions. We have explored various methods
of speeding up the search procedure during this past reporting period.
One particularly promising approach investigated is that of using a
gradient search but adjusting the step size of each iteration to

ensure the smallest possible error after a specified number (say M) of

iterations. (By error we actually mean error vector with dimensionality
N corresponding to the number of filter coefficients to be adjusced. It
is then the norm of the error vector that is to be minimized.)

Interestingly the problem when posed in this way provides as its
solution step sizes given by the reciprocal of the zeroes of polynomials
related to the classical Chebyshev polynomials. These polynomials in-
volve the smallest and largest eigenvalues of the matrix involving
lagged products of the incoming signal samples. They are hence in turn
related‘to the (unknown) channel characteristics.

An analysis of the convergence rate of this algorithm indicates it

is substantially faster than that for the fixed step size gradient
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search. The ratio of the norms of the Chebyshev error vector to the
fixed step size error vector may be shown to decrease exponehtially
with the iteration number M. Computer simulation for various types of
channels has verified these results.

Additional analysis of this Chebyshewrelated algorithm has focused
on tﬁe effects of additive noise Qn the convergence. A rather loose
upper bound on the variance of the error vector, due to noise, and ob-
tained by a randomly-generated step size argument, indicates the
variance is roughly the same as that for fixed step size. There is thus
no deterioration due to noise using this type of gradient search.
Extensive computer simulation has been begun to verify the variance
bound. Further work is continuing to tighten the bound, to analyze

several specific types of channels, and to compare in detail the Cheby-

shev approach with both fixed step size and optimum gradient search

procedure.

Nonlinear Distortion and Adaptive Equalizers

Most previous work on adaptive equalization, including the work
described above has focused on minimizing intersymbol interference -‘ue
to channel amplitude and phase distortion. We have now initiated a
study of the effects of nonlinear channel distortion on the equalizer
problem,

Specifically two approaches are to be initially investigated:

1. Assuming a predetermincd structure for the equalizer investigate
both its ultimate capabilities in minimizing intersymbol interference
and various algorithms for automatically adapting to the desired
characteristics; 2. Using some optimum criterion~-minimum probability

of error or least mean-squared error--attempt to obtain an optimum form
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for the structure of the equalizer.

As is true with most nonlinear problems general resultsywill pre-
sumably be difficult to obtain. However, by restricting ourselves to
particularly simple yet meaningful cases we hope to gain insight into
the problem. Specifically, the types of nonlinearity to be investigated,
for Whichvsome preliminary analysis has already been completed, include
quadratic and cubic distortion terms. The size of the equalizer (number
of filter coefficients) will also be restricted to a manageable number,
and intersymbol interference will be assumed limited to adjacent bounds
only.

Some thought indicates that any adaptive equalizer working with
signals having come through a nonlinear channel must contain nonlinear
terms as well. As a particularly simple predetermined structure for

S T

gurh an adsntive eaualizer we have chosen to investigate one suggested

by a Volterra seriés expansion. Such expansion ié éommonly Qé;ﬁnio'"‘
represent a nonlinear input-output relationship between an input signal
x(t) and the output y(t). The resultant functional power series m;y be
considered to be the generalization of a transfer function to non.inear
systems. The first term in the series represents a general linear
filter, and so suggests a linear non-recursive digital filter as its
implementation. The seéond term turns out to be given by the linear
sum of second-order products of the delayed input samples, etc.

Some limited coﬁputnr simulation of such an ad hoe¢ equalizer scheme
indicates that it does in fact provide improved equalization with non-
linear distortion present over a purely linear equalizer of the same

size. TIts ultimate capabilities as well as comparison to more "optimum"

structures remain to be investigated, however.
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4, Signal Zero-Crossings as Information Carriers in Communication

Systems [2],[3]

The distribution of zero-crossings has received little attention
as a means of signal transmission. Hdwever, the intelligibility of
clipped speech is well known from Licklider's work [9]. This pheno-
menon suggests the idea that zero-crossings carry much information
about the signal. Another fact is the striking eduality between the
number of degrees of freedom per unit of time of a bandlimited signal
and the maximum density of zero-crossings of such a signal.

Titchmarsh [10] has shown that a signal band limited to (-W,+W) is
completely defined by its zero-crossings if the density of these points
is 2W. Our purpose is to use a computer to recover the signal from its
zero-crossings. Thus we require that they be uniformly distributed in

the following-senmser—it—ts possible to fitida divisioo 6f the time

axis in intervals 1/2W wide such that there is one and only 6nér£€}o¥h
crossing in each. This feature is necessary for a computer implemcpta-
tion since only a finite number of data can be processed at the saue
time; this leads to the recovery of the signal in an interval from the
zeros it contains with a resulting error); uniform distribution of the
zeros insures uniform goodness of fit of the approximation in successive
intervals.,

A signal with these two properties will be called an optimum
signal. In the following ve investigate an algorithm to recover an
optimum signal from its zeroé. It is usual for a communication engineer
to expand a signal truncated in time in a Fourier series. We thus come

to an algorithm which follows this philosophy. Let
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+N

:";(t) = Z cN_kejkat (wo = 11/T; )tl <T7T)

be the approximation with the same zero-crossings as the signal x(t) in
the iﬁterval (-T, +T). Since the signal is optimum the interval contains
LWT zeros,‘therefére if we know the zero-crossing locations and the
energy of the signal in the intervallwe ﬁave enough information to com-
pute 4WT + 1 coefficients in the above equation; thus we let N = 2WT.

A
From the identity of the zero-crossings of x(t) and xX(t) we can

write
2N +N c
T "N-k  N+k
Z(q~qi)= ) e 4
- 0
i=1 k=-N

where q = exp(jwot) and 9 is the value teken by g at the i-th zero-

crossings. From this we devive the 2N _equations B J—

2N

Z_i;
45 =" =

i=1

2N

y o2
qiqj - CO

i=1, >1i

2N c
Z .3

Cc
i=1,k>j>1

(o]

etc.

and from the identity of the energies:

+N

+T E
Z_Jj 2 _ T
Z lcN-k‘ =77 x (t)dt = 53

k=-N -T
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It is easily seen that this algorithm does not in general lead to the
classical equality of Fourier series theory

Nk T SNk

and therefore Q(t)'is usually a complex function. Taking the real part
of Q(t) as an approximation, the signal-to-mean-square-~error ratio for
various optimum signals and intervals of time containing 6 zefo«crossings
is of the order of 20 db.

For the class of optimum signals the output signal-to-noise-ratio
S ’ . . s .
(N)O of a communication system consisting of a clipper, the channel, a
second clipper and the computer can be evaluated for high channel (input)

signal-to-noise ratio (§)i and large bandwidth. We get

)
<)
S 2 .S N1
Ve =7 e
N7o ™ N1
i.e, essentially an exponential behavior.

For the transmission of a general bandlimited signal x(t) we first
transZorm the signal into an optimum signal and transmit on two separate
chanceis the zero crossings of the optimum signal and a simple coded
sequence enabling the original signal to be recovered. 1In this case the

output signal-to-noise ratio is still given by an exponential function

of the channel signal-to-noise ratio.
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